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Ocean General Circulation Models

• Modular Ocean Model (MOM)

• Parallel Ocean Model (POP)

• Miami Isopycnic Coordinate Ocean Model
(MICOM)

• Semi-spectral Primitive Equation Model (SPEM)

• Several other models
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Grand Challenges
• Fine resolution

~ 0.1o resolution -> 3600x1200x100 grid

• Long time scale (decades, century)

• Many physical processes

• Topography
~ Load balance due to bottom and land
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Modular Ocean Model (MOM3)

• Community model, free download from
Internet

• Developed and supported by GFDL, Bryan-
Cox-Semtner.

• Large number of physical parametrizations.

• Widely used in ocean flow/circulation
simulations (350 users)

• Adopted by NCAR (NCOM), LANL(POP),
and many others for further developments.
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 MOM3
• 3D Large scale general ocean circulation

• Navier-Stokes + hydrostatic, Boussinesq approx.

• Finite difference

• Dynamics split into barotropic, baroclinic modes

• Barotropic: depth-averaged column velocities, 2D
variables

• Baroclinic: deviations from barotropic modes, 3D
variables

• Tracers: temperature and salinity, etc. 3D variables

• Free surface, Killworth et al, explicit method

• Free surface, Dukowicz et al, implicit method.



7

NERSC, Lawrence Berkeley Nat’l Lab Data Organization & I/O

C.Ding & Y.He

Some Observations of MOM3 Codes

• Memory window (out-of-core)

• Many options (*.F --> *.f)

• 80,000 lines of Fortran in 367 subroutines.

• I/O uses netCDF

• 1D decomposition (latitudes)
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FLow Chart of Simulation Process
Read topography,initial condition, etc

Write Memory Window data to disk/ramdisk

Advection velocities

Isopycnal mixing, vertical mixing, horizontal mixing

Vertical boundary condition

tracer equations

Baroclinic equations

Barotropic equation (free surface)

Load Memory Window data from disk/ramdisk

Diagnostics

Time step through all subtask:

Communication

Communication
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Data Organization

Three different data indexings:

• In memory: A( i , k , j , uv , ts )

• In disk file: A( i , j , k , uv , ts )

• In ramdisk: A( i , k , uv , ts ,j )

uv=1,2 for velocities
ts=1,2,..., for temp, salinity, etc
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 Out-of-Core Mode

ττ 1–

ττ 1–

τ 1+ ττ 1–

ττ 1–

τ 1+

communication

Processor i Processor j

Ramdisk

Memory window

Ramdisk

Memory window

betweenramdisks

* Requires extra memory copy



11

NERSC, Lawrence Berkeley Nat’l Lab Data Organization & I/O

C.Ding & Y.He

In-Core Mode

ττ 1– τ 1+

Processor j

Memory window

ττ 1– τ 1+

Memory window

Processor i

communication
between
memory windows

* Speedup Computation
* Prepare for parallel I/O
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Input/Output, netCDF
MOM uses netCDF (POP, CSM, Impact)

• netCDF is self-describing, portable, flexible.

• main problem is efficiency

NERSC resolved critical issues of netCDF in parallel
T3E environment (Owen, Anand, Luzmoor, Davis)

• Unlimited dimension

• Assign I/O control environment ($NETCDF_FFIOSPEC)

• subset of PEs open a global file

netCDF rates are reasonable

• 17 MByte/sec on 1PE.
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Snapshot I/O in MOM
Old:

• Load from Ramdrive to Memory Window
• Write out data one latitude slice at a time.

New:

• Do index switch in memory.
• Write all latitudes in one shot.

Reduce I/O time by a factor of50 !

i
j

k

Adjacent lines not contiguous in file space

A(i, k, j )
in memory

A(i, j , k)
in data files
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 Memory Window (Out-of-core)
• Only small portions of data stored in computer

memory. Swap data between memory and disk.

• Enable MOM to run on from workstations to C90
• Complicates code design, parallelization
• 50% slowdown on cache-based processors

Table 1: Timing for Different Memory Usage Modes

Time Total Baroclinic Barotropic

Memory Window Only 256 202 35.3

MW + Ramdrive 354 297 35.4
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Parallel I/O Basic Design

• Data file written as in sequential environments
~ Portable to other platforms

~ Output file directly used in any other platforms
(visualization) without extra file convertion

~ Restart/checkpointing simplified

~ Adaptable to changing environment: run on different
# of processors at different times.

• Use a few designated I/O processors
~ Relieves memory limitations of a single processor

~ Increasing available I/O channels, thus bandwidth
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Parallel I/O Basic Design

• Data file written as insequential environments

~ Portable to other platforms

~ Output filesdirectly analyzed/visualizedin any other
platforms without extra file convertion

~ Restart/checkpointingsimplified

~ Adaptable tochanging environment: run on different
# of processors at different times.

• Low-level I/O modules
~ Most existing I/O interfaceintact
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Parallel I/O Basic Design (con’t)

• Use severaldesignated I/O processors

~ Relievesmemory limitations of a single processor

~ Increases availableI/O channels, thusI/O rates

p0
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p2

p3

Depth-Split Decomp

Depth

Longitude

Latitude

Linear File Space

Read/Write
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Parallel I/O Implementation

• Start withIn-Core mode (everything in memory)

• Do 3D arrays, one after another,one at a time.

• Remapping 3D array to depth-split distribution on
ioPEs.

~ (# of ioPEs <= # of levels)

~ usein-place remapping algorithm

• Each ioPEwrite/readthe partial 3D array inone shot.
~ Treated ascontiguous block in 1D array.

~ Requires onlycollective I/O for 1D array.

• 2D arrays are done similarly.
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Remapping a 3D array from 6 processors to 4 designated I/O processors
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apping a 3D array fromPprocessors to4 designated I/O processors
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Optimization : Diagnose

• Diag() scales very poorly to large # of processors

• Reason:getunit() is called each time step. It’s very
time consuming.

• Modified diag() such that it calls getunit() once a
simulated day, or a pre-specified interval. This
speeds up diag() by a factor of32!

• Similar modifications are made forrelunit().
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Summary and Conclusions

• Analysis ofdata organization and I/O in MOM3

• Out-of-core memory usage mode not suitable

• In-corememory usage mode speedup computing and
facilitate I/O

• Sequential netCDF I/O is speedup by50-fold

• Parallel I/O design and implementationscales well

• An inplace 3D arrayremappingalgorithm developed

• 2D barotropic explicit free surfacenot scales well.
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